Quantitative Models for Supply Chain Design and Management

Raul Poler

Valencia
Universidad Politécnica de Valencia
Camino de Vera s/n, Ed. 8G - Esc. 4 - Nivel 1 y 4 (Ciudad Politécnica de la Innovación)
46022 Valencia - España

Alcoy
Esc. Politécnica Superior de Alcoy
Universidad Politécnica de Valencia
Plaza Ferrándiz Carbonell nº2, Edificio
03801 Alcoy (Alicante) - España

Tel.: (34) 963 879 680 - Fax: (34) 963 879 682 - e-mail: info@cigip.org
Profile

Raul Poler
PhD Industrial Engineering
Professor at Polytechnic University of Valencia (UPV)
Director of Research Centre on Production Management and Engineering (CIGIP)
Founder partner of Spin-off UPV EXOS Solutions
Director of Master in Industrial Engineering and Logistics (MUIOL)
LinkedIn
Google Scholar
Outline

- Introduction
- Mathematical Programming Models
- Strategic Models for Supply Chain Design
 - The single-source facility location problem
 - The distribution system problem
 - The integrated production/distribution system problem
- Tactical Models for Supply Chain Planning
 - The integrated production/distribution planning problem
 - The multisite supply chains planning problem
- Operational Models for Supply Chain Scheduling
 - The processing unit scheduling problem
Outline

- Introduction
- Mathematical Programming Models
- Strategic Models for Supply Chain Design
 - The single-source facility location problem
 - The distribution system problem
 - The integrated production/distribution system problem
- Tactical Models for Supply Chain Planning
 - The integrated production/distribution planning problem
 - The multisite supply chains planning problem
- Operational Models for Supply Chain Scheduling
 - The processing unit scheduling problem
Introduction

- The Supply Chain planning matrix

Introduction

The Supply Chain planning matrix

- Strategic Level
 - Supply Chain Design
- Tactical Level
 - SC Operations Planning
- Operational Level
 - SC Operations Scheduling
Introduction

Quantitative Models for SCM – Taxonomy:

- **Decision level**
 - Strategic ✓
 - Tactical ✓
 - Operational ✓

- **Modelling approach**
 - Deterministic ✓
 - Stochastic
 - Hybrid
 - IT-driven

- **Physical environment**
 - One-stage ✓
 - Two-stage ✓
 - Multi-stage ✓
Introduction

Quantitative Models for SCM – Taxonomy:

- **Decision level**
 - **Strategic**:
 - Horizon of 5-10 years
 - It affects long-term system performance
 - System Design
 - Resource Acquisition
 - **Tactical**:
 - Horizon 1-2 years
 - Medium term affects system performance
 - Deciding on the best use of different acquired resources
 - **Operational**:
 - 1-18 months horizon
 - Very small time periods
 - Sequencing and timing of operations
Introduction

- Quantitative Models for SCM – Taxonomy:
 - Physical environment
 - Stages
 - One-stage, two-stage, multi-stage
 - Stages considered in the Supply Chain structure:
 - Component Supplier (CS)
 - Inbound Logistics (IN)
 - Assembly Plants (AP)
 - Outbound Logistics (OUT)

Introduction

- Quantitative Models for SCM – Taxonomy:
 - Physical environment
 - Layers

Quantitative Models for Supply Chain Design and Management – Raul Poler
Introduction

Quantitative Models for SCM – Taxonomy:

- **Modelling approach**
 - Deterministic models
 - All model parameters are fixed and known with certainty
 - Stochastic models
 - Some model parameters are uncertain or random
 - Hybrid models
 - Mixed models (deterministic and stochastic)
 - IT-driven models
 - Try to integrate and coordinate various stages of Supply Chain planning on a real time basis and to improve visibility through the Supply Chain using software applications

Introduction

Quantitative Models for SCM – Taxonomy:

- **Modelling approach**
 - Deterministic models
 - Single objective
 - Multiple objectives
 - Stochastic models
 - Optimal Control Theory
 - Dynamic Programming
 - Hybrid models
 - Inventory Theoretic
 - Simulation
 - IT-driven models
 - CPFR (Collaborative Planning and Forecasting Replenishment)
 - MRP (Materials Requirement Planning)
 - DRP (Distribution Resource Planning)
 - ERP (Enterprise Resource Planning)
 - GIS (Geographic Information System)
Introduction

- Quantitative Models for SCM: Centralized vs Distributed

 Centralized decision making
 - A single decision-maker that has authority to manage the operations of all entities of the Supply Chain
 - Centralizes all the needed information necessary for decision making
 - Takes decisions on the proper operation of the SC as a whole
 - Based on some agreed objectives of the SC partners
 - A single quantitative model

 Distributed decision making
 - Several decision-makers
 - Each decider makes its own plans based on:
 - Own objectives and constrains
 - Some private information
 - As much quantitative models as as decision-makers
 - Need for coordination of all quantitative models

Which will achieve the optimum for all the Supply Chain?
Outline

- Introduction
- Mathematical Programming Models
 - Strategic Models for Supply Chain Design
 - The single-source facility location problem
 - The distribution system problem
 - The integrated production/distribution system problem
 - Tactical Models for Supply Chain Planning
 - The integrated production/distribution planning problem
 - The multisite supply chains planning problem
 - Operational Models for Supply Chain Scheduling
 - The processing unit scheduling problem
Mathematical Programming Models

Mathematical Programming

- In Operations Research, Mathematical Programming is the selection of a best element (with regard to some criteria) from some set of available alternatives.

Main types:

- Linear Programming (LP)
 - Continuous Linear Programming (CLP)
 - Integer Linear Programming (ILP)
 - Mixed Integer Linear Programming (MILP)
- Non-Linear Programming (NLP)
 - Continuous Non-Linear Programming (CNLP)
 - Integer Non-Linear Programming (INLP)
 - Mixed Integer Non-Linear Programming (MINLP)
- Quadratic Programming (QP)
Mathematical Programming Models

- **Structure**
 - **Indexes**
 - Model elements (factory, machine, part, etc.)
 - **Sets**
 - Groups of instances of indexes (set of machines, etc.)
 - **Parameters, data**
 - Known attributes which can not be changed (cost, demand, etc.)
 - **Decision variables**
 - Unknown attributes which can be changed (amount to produce, etc.)
 - **Objective(s)**
 - Value(s) which the decision-maker wants to optimize (maximize or minimize)
 - **Constraints**
 - Limits to satisfy (resources capacity, available money, etc.)
A simple example

Nitron Corporation manufactures 2 products (A and B) using 2 machines (P and Q). Product A provides a benefit of 60€ per unit, product B provides a benefit of 50€ per unit. Each unit of product A requires 10 min of machine P and 8 min of machine Q. Each unit of product B requires 20 min of machine P and 5 min of machine Q. Machine P capacity is 200 min per day. Machine Q capacity is 80 min per day. The minimum production should be 2 units of A and 5 units of B per day. ¿How many units A and B should Nitron produce per day?
Mathematical Programming Models

- Indexes:
 - i: products
 - j: machines

- Sets:
 - i: \{A, B\}
 - j: \{P, Q\}

- Data:
 - Be_i: [60, 50] \rightarrow $Be_A = 60 ; Be_B = 50$
 - Mp_i: [2, 5] \rightarrow $Mp_A = 2 ; Mp_B = 5$
 - Ca_j: [200, 80] \rightarrow $Ca_P = 200 ; Ca_Q = 80$
 - Req_{ij}: [[10, 8] [20, 5]] \rightarrow $Req_{AP} = 10 ; Req_{AQ} = 8 ; Req_{BP} = 20 ; Req_{BQ} = 5$

- Decision variables:
 - $X_i \rightarrow X_A ; X_B$
Mathematical Programming Models

- **Objective:**
 Maximize benefit

 \[MaxZ = \sum_i Be_i \cdot X_i \]

- **Constraints:**
 Machines capacity

 \[\sum_i Req_{ij} \cdot X_i \leq Ca_j \quad j = \{P, Q\} \]

 Minimum production

 \[X_i \geq Mp_i \quad i = \{A, B\} \]
Mathematical Programming Models

- Independency of data
- Solve different problems when data changes
- Scalability
 - 2 products → 100 products
 - 2 machines → 50 machines
Mathematical Programming Models

- Data stored in a DATABASE

![Database Diagram]
Mathematical Programming Models

- Model written with an Algebraic Modelling Language (AML)
 - AMPL
 - http://AMPL.com/
 - GAMS (General Algebraic Modelling System)
 - http://GAMS.com/
 - LINDO/LINGO
 - MPL (Mathematical Programming Language)
 - http://maximalsoftware.com/
 - Pyomo
 - http://www.pyomo.org/
 - JuMP (Julia for Mathematical Programming)
Mathematical Programming Models

Classwork → model in MPL

- Create the tables in the Nitron.mdb database and fill the data
- Create the Nitron.mpl model
- Obtain the solution
Mathematical Programming Models

- Model sections in MPL

 TITLE

 OPTIONS

 INDEX

 DATA

 VARIABLES

 MACROS

 MODEL

 SUBJECT TO

 BOUNDS

 INTEGER

 BINARY

 FREE

 END
Mathematical Programming Models

Model in MPL

! Nitron Corporation
TITLE
 Nitron;
OPTIONS
 DatabaseType=Access;
 DatabaseAccess="Nitron.mdb";
INDEX
 i := DATABASE("Products", "IdProduct");
 j := DATABASE("Machines", "IdMachine");
DATA
 Be[i] := DATABASE("Products", "Benefit");
 Mp[i] := DATABASE("Products", "MinProduction");
 Ca[j] := DATABASE("Machines", "Capacity");
 Req[i,j] := DATABASE("Requirements", "Requirement");
VARIABLES
 X[i] EXPORT TO DATABASE("Products" , "Production");
MACROS
 Benefit := SUM(i: Be[i]*X[i]);
MODEL
 MAX Z = Benefit;
SUBJECT TO
 RCa[j] : SUM(i:Req[i,j]*X[i]) <= Ca[j];
BOUNDS
 X[i] >= Mp[i];
END
Mathematical Programming Models

Model check in MPL

![Image of MPL software interface showing a mathematical model for Nitron Corporation]

- **TITLE**: Nitron
- **OPTIONS**: Database Type = Access, Database Access = "Nitron.mdb"
- **INDEX**: i, j
- **DATA**: Be[i], Mp[i], Ca[j], Req[i,j]
- **VARIABLES**: X[i]
- **MACROS**: Benefit := SUM(i: Be[i] * X[i])
- **MODEL**: MAX Z = Benefit; SUBJECT TO: RCA[j] := SUM(i: Req[i,j] * X[i]) <= 0; BOUNDS: X[i] >= Mp[i]

Status Window
- The syntax of 'Nitron.mpl' is correct.
- Main File: Nitron.mpl, Lines: 25, Time: 0.067s
- Model: Variables: 0, Nonzeros: 0, Constraints: 0, Integers: 0
- Solver: Iterations, Objective Function
 - Phase1: 0, 0.0000
 - Total: 0, 0.0000

Check Syntax
Mathematical Programming Models

Model solve in MPL

```plaintext
TITLE
Nitron;
OPTIONS
    DatabaseType=Access;
    DatabaseAccess="Nitron.mdb";
INDEX
    i   := DATABASE("Products", "E1");
    j   := DATABASE("Machines", "E1");
DATA
    B[i]  := DATABASE("Products", "E1");
    M[i]  := DATABASE("Products", "E1");
    C[j]  := DATABASE("Machines", "E1");
    R[i,j] := DATABASE("Requirements", "E1");
VARIABLES
    X[i]  EXPORT TO DATABASE("Products", "E1");
MACROS
    Benefit := SUM(i: B[i] * X[i]);
MODEL
    MAX Z = Benefit;
SUBJECT TO
    R[j]  := SUM(i: R[i,j] * X[i]) 
        <= C[j];
    B[i]  >= M[i];
END
```

Status Window

Optimal solution found

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables</th>
<th>Nonzeros</th>
<th>Constraints</th>
<th>Integers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitron.mpl</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Solver

<table>
<thead>
<tr>
<th>Iterations</th>
<th>Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>709.0003</td>
</tr>
</tbody>
</table>

Solve
Mathematical Programming Models

- **MPL solution**

```plaintext
SOLUTION RESULT
Optimal solution found
MAX Z = 709.0909

MACROS
Macro Name | Values
--- | ---
Benefit | 709.0909

DECISION VARIABLES
VARIABLE X[i] :

<table>
<thead>
<tr>
<th>i</th>
<th>Activity</th>
<th>Reduced Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5.4545</td>
<td>0.0000</td>
</tr>
<tr>
<td>B</td>
<td>7.2727</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

CONSTRAINTS
CONSTRAINT RCa[j] :

<table>
<thead>
<tr>
<th>j</th>
<th>Slack</th>
<th>Shadow Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0.0000</td>
<td>2.0909</td>
</tr>
<tr>
<td>Q</td>
<td>0.0000</td>
<td>3.6364</td>
</tr>
</tbody>
</table>

END
```
Mathematical Programming Models

- Solution in database

<table>
<thead>
<tr>
<th>IdProduct</th>
<th>Benefit</th>
<th>MinProduction</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>50</td>
<td>2</td>
<td>5,4545454545</td>
</tr>
<tr>
<td>B</td>
<td>60</td>
<td>5</td>
<td>7,2727272727</td>
</tr>
</tbody>
</table>
Mathematical Programming Models

- Model in MPL (integer values)

```
TITLE
   Nitron;
OPTIONS
   DatabaseType=Access;
   DatabaseAccess="Nitron.mdb";
INDEX
   i       := DATABASE("Products", "IdProduct");
   j       := DATABASE("Machines", "IdMachine");
DATA
   Be[i]   := DATABASE("Products", "Benefit");
   Mp[i]   := DATABASE("Products", "MinProduction");
   Ca[j]   := DATABASE("Machines", "Capacity");
   Req[i,j]:= DATABASE("Requirements", "Requirement");
VARIABLES
   X[i]     EXPORT TO DATABASE("Products", "Production");
MACROS
   Benefit := SUM(i: Be[i]*X[i]);
MODEL
   MAX Z = Benefit;
SUBJECT TO
   RCa[j] : SUM(i:Req[i,j]*X[i]) <= Ca[j];
BOUNDS
   X[i] >= Mp[i];
INTEGER
   X[i];
END
```
Mathematical Programming Models

- MPL solution (integer values)

SOLUTION RESULT
Optimal integer solution found
MAX Z = 680.0000

MACROS
Macro Name Values

Benefit 680.0000

DECISION VARIABLES
VARIABLE X[i] :
i Activity Reduced Cost

A 4.0000 0.0000
B 8.0000 -40.0000

CONSTRAINTS
CONSTRAINT RCa[j] :
j Slack Shadow Price

P 0.0000 5.0000
Q 8.0000 0.0000

END
Mathematical Programming Models

Solution in database (integer values)

<table>
<thead>
<tr>
<th>IdProduct</th>
<th>Benefit</th>
<th>MinProduction</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>50</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>60</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>
Outline

- Introduction
- Mathematical Programming Models
- Strategic Models for Supply Chain Design
 - The single-source facility location problem
 - The distribution system problem
 - The integrated production/distribution system problem
- Tactical Models for Supply Chain Planning
 - The integrated production/distribution planning problem
 - The multisite supply chains planning problem
- Operational Models for Supply Chain Scheduling
 - The processing unit scheduling problem
The single-source facility location problem

- **Strategic / One-stage / Deterministic**
 - **Goal:** locating a set of warehouses in a distribution network
 - Retailers geographically dispersed in a region
 - There are \(m \) preselected locations as possible store locations
 - Retailers want to receive products from a single warehouse
 - **The cost of placing a warehouse at a particular location includes**
 - Fixed Cost: construction costs, maintenance, etc.
 - Variable costs: transport costs
 - **Decision variable:** locations where to locate the warehouses
 - **Objective:** minimize the total cost

The single-source facility location problem

- warehouses (unknown design)
- customers (known design)
Strategic Models for Supply Chain Design

- Indexes:
 - i: retailers
 - j: locations (in which place the warehouses)

- Data:
 - d_i: yearly demand from retailer i
 - b_{ij}: cost of transporting d_i units from warehouse j to retailer i
 - F_j: yearly operation cost of warehouse j
 - q_j: capacity of warehouse j in units

- Decision variables:
 - Y_j: binary { 1 if a warehouse is placed in location j } { 0 otherwise }
 - X_{ij}: binary { 1 if the warehouse j supplies the retailer i } { 0 otherwise }

The single-source facility location problem
Strategic Models for Supply Chain Design

- **Objective:**

 Minimize transport cost and operation cost

 \[\text{Min} Z = \sum_i \sum_j b_{ij} \cdot X_{ij} + \sum_j F_j \cdot Y_j \]

- **Constraints:**

 Units transported from a warehouse \(j\) to all the retailers \(i\) (to which it supplies) should be less than its capacity

 \[\sum_i d_i \cdot X_{ij} \leq q_j \cdot Y_j \quad \forall j \]

 Retailers should receive products from a single warehouse

 \[\sum_j X_{ij} \leq 1 \quad \forall i \]
Strategic Models for Supply Chain Design

Constraints: (cont)

Demand from all the retailers \(i \) should be fulfilled

\[
\sum_{j} d_i \cdot X_{ij} \geq d_i \quad \forall i
\]
Strategic Models for Supply Chain Design

Classwork → model in MPL

- Use the SSFLP.mdb database
- Create the SSFLP.mpl model
- Obtain the solution

The single-source facility location problem
Outline

- Introduction
- Mathematical Programming Models
- **Strategic Models for Supply Chain Design**
 - The single-source facility location problem
 - The distribution system problem
 - The integrated production/distribution system problem
- **Tactical Models for Supply Chain Planning**
 - The integrated production/distribution planning problem
 - The multisite supply chains planning problem
- **Operational Models for Supply Chain Scheduling**
 - The processing unit scheduling problem
The distribution system problem

Strategic / One-stage / Deterministic

Goal: define the optimum network of distribution warehouses for distributing products to retailers (regions) from production plants
- Production plants are known (amount and location)
- Retailers are known and grouped in regions
- Warehouses should be built in pertinent locations

Costs:
- Fixed Cost: warehouses construction; warehouses operation
- Variable costs: transport costs between production plants and warehouses and between warehouses and regions; warehouses maintenance

Decision variables:
- Locations where to locate the warehouses; warehouses assignment to regions; amount of products transported from plants to warehouses and from warehouses to regions

Objective: minimize the total cost
The distribution system problem

plants (known design) warehouses (unknown design) regions (known design)

Strategic Models for Supply Chain Design

- **Indexes:**
 - i: production plants
 - j: warehouses
 - k: regions (of retailers)
 - l: products

- **Data:**
 - d_{kl}: demand from region k of product l
 - a_{ijl}: cost of transporting 1 unit of product l from plant i to warehouse j
 - b_{jkl}: cost of transporting 1 unit of product l from warehouse j to region k
 - I_j: cost of building warehouse j
 - F_j: yearly operation cost of warehouse j
 - v_{jl}: handling cost of 1 unit of product l in warehouse j
 - c_{il}: yearly production capacity of product l in plant i
 - C: maximum amount of warehouses to build
 - B: maximum investment for warehouses building
Strategic Models for Supply Chain Design

- Decision variables:
 - Y_j: binary { 1 if a warehouse j is built} { 0 otherwise }
 - W_{jk}: binary { 1 if the warehouse j supplies the region k } { 0 otherwise }
 - S_{ijl}: units of product l transported from plant i to warehouse j
 - T_{jkl}: units of product l transported from warehouse j to region k

- Objective:
 Minimize transport cost, handling cost and building and operation cost

$$MinZ = \sum_{i} \sum_{j} \sum_{l} a_{ijl} \cdot S_{ijl} + \sum_{j} \sum_{k} \sum_{l} b_{jkl} \cdot T_{jkl} + \sum_{j} \sum_{k} \sum_{l} d_{kl} \cdot v_{jl} \cdot W_{jk} + \sum_{j} \left(F_j \cdot Y_j + I_j \cdot Y_j\right)$$
Strategic Models for Supply Chain Design

Constraints:

Material flows

The demand of all products from all regions should be satisfied

$$\sum_{j} T_{jkl} = d_{kl} \quad \forall k, \forall l$$

The amount of each product which arrives to a warehouse should be equal to the amount which exit from that warehouse

$$\sum_{i} S_{ijl} = \sum_{k} T_{jkl} \quad \forall j, \forall l$$

Physical resources limitations

The amount of each product produced by a plant should not exceed the production capacity

$$\sum_{j} S_{ijl} \leq c_{il} \quad \forall i, \forall l$$
The distribution system problem

Constraints: (cont)

Financial resources limitations
The amount of money invested in building warehouses should not exceed the investment budget

\[\sum_{j} I_j \cdot Y_j \leq B \]

Company policies
Each region receives all its products from only one warehouse

\[\sum_{j} W_{jk} = 1 \quad \forall k \]

The number of warehouses built should not exceed the limit

\[\sum_{j} Y_j \leq C \]
Constraints: (cont)

Logical constraints

A warehouse will supply a region only when the amount transported of all products from such warehouse to such region is nonzero

$$\sum_{l} T_{jkl} \leq M \cdot W_{jk} \quad \forall j, \forall k$$

A warehouse should be built if it supplies to any region

$$W_{jk} \leq Y_{j} \quad \forall j, \forall k$$
Strategic Models for Supply Chain Design

Classwork → model in MPL

- Use the DSP.mdb database
- Create the DSP.mpl model
- Obtain the solution